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ABSTRACT Let A(fXx) denote the supremum of the aver-
ages of ftaken over all (surfaces of) spheres centered at x. Then
f ^Ist(f) is bounded on LP(R n), whenever p > n/(n - 1), and
n 2 3.

The purpose of this note, and of succeeding ones, is to present
some recent results for maximal functions and to discuss several
of their applications. This work had as its initial inspiration the
idea of Nagel et al. (see ref. 1) that the Fourier transform could
be used in a decisive way to prove maximal inequalities. In
retrospect it is also clear that the spirit of the arguments given
below had to some extent been anticipated in Chapter III of ref.
2, where a maximal theorem was proved for symmetric diffu-
sion semi-groups.

For suitable f given on R , say f E A, one may define
Mt(f)(x) = SIi=y f(x - ty) da(y), which is up to a multipli-
cative constant the mean-value of f on the sphere of radius t
centered at x. (da is the usual measure on the unit sphere.) We
define the corresponding maximal function A(f)(x) = supt>o
IMt(f)(XA.
We are interested in the a priori maximal inequality

[1]

THEOREM 1. Suppose n > 3. Then the inequality [1] holds
whenever n/(n - ) < p < ao. Ifp < n/(n - 1) the inequality
[1] is not valid.

It is easy to see that when n = 1, only the trivial case (p = xo)
of [1] holds. When n = 2, and 1 < p < 2, the inequality also fails.
What happens when n = 2 (and 2 < p) remains open.
To see the negative results one merely takes F(x) =

Ix I -n+ '(log (11jxj ))-1, for 0 < Ix I < Y2, and F(x) = O. if Ix I >
/½. Then F E LP(Rn), where p . n/(n - 1), but supt>o
lMt(F)(x)l = co everywhere. Thus, a simple limiting argument
shows that the a priori inequality [1] cannot hold for those p.
To prove the positive results and in view of further applica-

tions one considers also certain variants of Mt and A. For a >
0, let ma(x) = (1 - lXI 2)ai/F(a), when IxI < 1 and ma(x)
= 0 if Ixi 2 1. With mat(x) = ma(x/t)t n, t > 0, we define
Mtaf(x) = (f * m.,t)(x). Now as is known (see, e.g., ref 3, p. 171)
the Fourier transform of ma is given by

iha(4) - ,.7r-a+i-n/2 - a + In/2+a- 1(27r 14). [2]

Thus, for complex a in general we can also define the oper-
ators Mta by

(Mtafy^ (4) = a(4t)f(4), fES.

We observe that Mtof = a constant multiple of Mtf, defined
previously. In analogy with A we define AJl by Aca(f)(x) =
supt>o IMta(fXAM.

THEOREM 2. The inequality II| A'(f) lip < Ap,a Ilf Ilp holds
in the following circumstances.

(a) if 1 < p<2, when ax>1-n + n/p.

(b) if 2 < p5< , when a > (1/0p)(2-n)
Obviously the postive part of Theorem 1 is the special case

a = 0 of Theorem 2.

Outline of the proof
The key step in the argument is to consider an appropriate
"g-function," whose control is akin to a "Tauberian condition";
this allows one to pass from A to a standard maximal function.
For each a we fix a function so which is smooth and has

compact support and so that k(0) = fRw (P(x) dx = 'a(O). Set
t(X) = sP(x/t)t-n. We define ga(f)(x) by

ga(fXx) = (fIMta(f)(X)-(f*fpt)(x)l2)/ [3]

LEMMA 1.

lga(f)112 < A-11f if a > 1/2 - n/2

By Plancherel's formula it suffices to see that

.|CD~~t)s (~2 dt A2

By homogeneity it is enough to show this when {l = 1. The
integral is the sum of two parts: one with small t, and the other
with large t. The first converges because mda(O) = k(0), and both
ma and spare smooth near the origin. The second part converges
because Ma(4t) = O(It -n/2-a+ 1/2), as t o , in view of Eq
[2]. A direct consequence of the lemma and the fact that suPt
I (f * 0t )(x) I is majorized by the standard maximal function is
the following:
LEMMA 2.

sup- r{Af"M,(f)(x)121ds}. 4<' If 112, a> 1/2 - n/2.
t>h 2

The next step is to invoke the identity, (whenever a> a'),

M a (x) = Mrt-a')f M8td(fXx)(1_-2)a -l n+2a' lds

[4]
From this and Lemma 2 it follows that Djsupt>olMta(f)( )l 112

< Aa 1If IIa, whenever a > 1 - n/2, which is Theorem 2 in the
case p = 2. The result for 2 < p < o then follows from this and
the trivial inequality for p = co, and Re(a) >0 via a convexity
argument involving complex a. The case 1 < p < 2 follows
similarly, but this time we use the observation that Aca(f)(x) is
essentially majorized by the standard maximal function when
Re(a) > 1. (For similar convexity arguments see, e.g., Chapter
VII, §5 of ref. 3.)
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* Part I of a series. Part II is the accompanying paper.

IIA (f )lip < Ap Ilf lip 3' fGE *.
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Further results
(i) We now consider what happens for arbitrary f E LP(Rn)
with a satisfying conditions (a) or (b) of Theorem 2. For each
fixed t, t > 0, the operatorf - Mta(f), initially defined onS.
has a unique extension as a bounded operator on LP. The
function Mt a(f)(x) can now be redefined on a set of x measure
zero (for each fixed t) so that the following holds:

PROPOSITION. With a suitable definition of Mta(f)(x) for
each t, the function t Mta(f)(x) is continuous in t E[,),
for almost every x. Moreover, 1Isupt>o IMta(f)(x) IIp <

Ap'a lf lip,
This proposition is a consequence of Theorem 2 and a second

application of identity [4].
(fi) We are indebted to A. Cordoba for calling our attention

to the connection of Theorem 1 with solutions of the wave
equation. A general result can be stated as follows: Suppose a
= (3/2) - n/2. If cn = (1/2)wrn/2-1/2, then u(x,t) =
cjtMta(f)(x) is a (weak) solution of the wave equation

n 02u d2u
, axj2 at2'

with initial conditions u(xO) = O.du/Ot(xO) = f(x). Theorem
2 combined with (i) above then gives us the following analogue
of Fatou's theorem for solutions of the wave equation.

COROLLARY. limt--o u(xt)/t = f(x) almost everywhere,
iffE LP(Rn), and 2n/(n + 1) < p < co. (Whenn = 1, this
result holds for 1 < p < oI.) The convergence is also domi-
natedly in the LP norm if in addition p < co, when n = 1, 2,
or 3, and p < 2(n - 2)/(n - 3), when n 2 4.

(iii) A. P. Calderon and A. Zygmund have pointed out to the
author that a limiting argument applied to Theorem 1 allows
one to show that whenever f is a Borel measurable function in
LP (and p > n/(n - 1), with n 2 3), then the integral defining
Mt f)(x) converges for all t > 0, except when x belongs to an
exceptional set of measure zero. Moreover M(f) satisfies the
inequality [1]. As a consequence, whenever E is any set of
measure zero in Rn, n 2 3, then for almost every x the inter-
section of E with any sphere centered at x has (n - 1) dimen-
sional measure zero.
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